TD : PROGRAMMATION DYNAMIQUE — PROBLEME DU SAC A DOS

TD : PROGRAMMATION DYNAMIQUE
== PROBLEME DU SAC A DOS ==

Remarque : les rappels théoriques sont en derniére page de ce sujet.

Le fichier source a utiliser pour ce TD est : « TD2 — SacADos.py »

Un randonneur prépare son sac a dos pour une expédition en montagne. Il dispose de
plusieurs équipements, chacun ayant une valeur d'utilité (importance pour la randonnée) et
un poids. Son sac a dos a une capacité maximale limitée, et il souhaite emporter les
équipements qui maximisent la valeur totale d'utilité tout en respectant la contrainte de
poids.

Objet Equipement Valeur Poids (kg)
1 Tente légére 7 4
2 Sac de couchage 5 3
3 Réchaud + gamelle 3 2
4 Nourriture (3 jours) 6 5
5 Trousse de secours 4 2

La capacité maximale du sac a dos est C = 10 kg. L'objectif est de trouver le sous-ensemble
d'équipements qui maximise la valeur totale tout en respectant cette contrainte de poids.

L'objectif de ce TD est d'implémenter les algorithmes de programmation dynamique
(approches bottom-up et top-down) pour résoudre ce probléme, puis reconstruire la
solution optimale. Vous utiliserez des dictionnaires Python pour mémoriser les résultats des
sous-problémes

1) APPROCHE BOTTOM-UP (TABULATION)

Dans cette partie, vous allez implémenter I'approche bottom-up qui remplit une table de
tous les sous-problemes, des plus petits aux plus grands. Les données sont déja définies dans
le fichier source sous la forme d’un dictionnaire objets = {n°objet:(Valeur, Poids)} :

objets = {1:(7,4),2:(5,3),3:(3,2),4:(6,5),5:(4,2)}
C =10 # Capacité maximale
A= {} # Table de mémoisation

1. Ecrire une fonction initialiser_table(A, objets, C) quiinitialise le dictionnaire
représentant la table A. La fonction doit uniquement initialiser les cas de base :
- A[(0, c)] =0 pour tout c de 0 a C (aucun objet disponible)
- A[(i, 0)] =0 pour tout i de 0 a n (capacité nulle)

2. Ecrire une fonction remplir_table(A, objets, C) quiremplit entiérement la table A
en utilisant I'équation de récurrence du cours et qui est rappelée a la fin du sujet.
Attention a I'ordre de parcours : on doit calculer A[(i, c)] pouriallant de 1 a n, et pour
chaquei, callantde 1aC.




TD : PROGRAMMATION DYNAMIQUE — PROBLEME DU SAC A DOS

Vérifier : >>> AfficheTable(A,objets,C)

Table de programmation dynamique

Nombre d'éléments i

0 2 4 6 8 10
Capacité c

5. Combien de sous-problémes sont calculés dans I'approche bottom-up ? Quelle est Ia
complexité temporelle de cet algorithme ?

1) APPROCHE TOP-DOWN AVEC MEMOISATION

Dans cette partie, vous allez implémenter I'algorithme récursif avec mémoisation. L'idée est
de partir du probléme principal et de le décomposer en sous-problemes, en mémorisant les
résultats pour éviter les calculs redondants.

On utilisera un dictionnaire global pour la mémoisation: A = {}

1. Ecrire une fonction récursive rec_opt_val(i, c) quiimplémente la récurrence avec
mémoisation rappelé a la fin du sujet.

Tester : >>> rec_opt_val(0,0) >>> rec_opt_val(o,10)
0 0
>>> prec_opt_val(3,3) >>> rec_opt_val(3,5)
5 8

2. |Initialiser le dictionnaire de la table puis appeler la fonction précédente afin de chercher
la valeur optimale. Vérifier votre table :

Table de programmation dynamique

Nombre d'éléments i

0 2 4 6 8 10

Capacité ¢




TD : PROGRAMMATION DYNAMIQUE — PROBLEME DU SAC A DOS

3. Comparez les tables obtenues par les approches bottom-up et top-down. Que constatez-
vous concernant le nombre de cases remplies ? Expliquez cette différence.

4. Quelle est la complexité temporelle de I'algorithme top-down avec mémoisation ?
Justifiez votre réponse en considérant le nombre de sous-problemes distincts et le colt
de chaque sous-probleme.

5. Quelle est la complexité spatiale de cet algorithme ? Prenez en compte a la fois le
dictionnaire de mémoisation et la pile d'appels récursifs.

Ill) RECONSTRUCTION DE LA SOLUTION

Maintenant que nous connaissons la valeur optimale, nous devons déterminer quels
équipements le randonneur doit emporter. Cette étape s'appelle la reconstruction de la
solution.

La reconstruction consiste a « remonter » dans la table A pour déterminer, a chaque étape,
sil'objet i a été pris ou non. On part de A[(n, C)] et on remonte jusqu'ai=0.

1. Ecrire une fonction objet_pris(A, objets, i, c) quiretourne True sil'objetia été
pris pour obtenir la valeur A[ (i, c)], False sinon.

Tester : >>> objet_pris(A,5,10) >>> objet_pris(A,4,8)
True False

2. Ecrire une fonction reconstruire_solution(A, objets, C) qui retourne la liste des
indices des objets faisant partie de la solution optimale.

Vérifier : >>> reconstruire_solution(A,objets,C)
[5, 2, 1]

3. Quelle est la complexité temporelle de I'algorithme de reconstruction ?

4. Vérifiez que la solution obtenue respecte bien la contrainte de capacité. Que remarquez-
vous concernant le poids total par rapport a la capacité maximale ?




TD : PROGRAMMATION DYNAMIQUE — PROBLEME DU SAC A DOS

RAPPELS THEORIQUES

Formulation du probleme

Une instance du probléme du sac a dos est spécifiée par (2n + 1) entiers positifs, ou n est le
nombre d'objets : une valeur v; et une taille s; pour chaque objet i, ainsi qu'une capacité C du
sac a dos.

La tache de I'algorithme est de sélectionner un sous-ensemble S d'objets tel que la valeur
totale ),;es v; soit maximale, sous la contrainte que la taille totale }};cg s; soit au plus C.

Sous-problémes et notation
On définit le sous-probléeme A;. comme suit :
- Aic = valeur totale maximale d'un sous-ensemble des i premiers objets dont la taille
totale est au plus c.
- Quandi=0,oninterprete Ao comme étant 0.

Relation de récurrence

Pour calculer Aic, on distingue deux cas selon que I'on prend ou non l'objet i :
- Casn®1 (on ne prend pas l'objet i) : Aic = Ai.1,c
- Casn®2(on prend l'objet i) : Aic = Ai-1,csi + Vi

La récurrence s'écrit donc :
Ai—l,c Si >cC
A= Ai—l,c
¢ | max {A } si<c
i—-1,c-s; +v;
Cas de base
Les cas de base sont les suivants :
- Ao =0 pour tout c : aucun objet disponible, valeur nulle.

- Aio=0 pour touti: capacité nulle, on ne peut prendre aucun objet.

Algorithme de reconstruction

Une fois la table A remplie, on reconstruit la solution optimale en « remontant » dans la
table depuis Anc jusqu'ai=0.

Principe : Pour chaque objeti (de n a 1), on détermine s'il a été pris ou non :
- SiAic#Ai1 I'objetiaété pris. On I'ajoute a la solution et on met a jour c:=c-si.
- Sinon, l'objet i n'a pas été pris. On passe a l'objet suivant sans modifier c.




